
J. Fluid Mech. (1982), wol. 115, p p .  27-37 

Printed in Great Britain 
27 

Flow development in the vicinity of the sharp trailing 
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The initial development of the viscous flow in the vicinity of the sharp trailing edge 
of a symmetrical body, impulsively set into motion is studied within the framework 
of boundary-layer theory. For a blunt trailing edge there exists a similarity solution 
for the inviscid outer flow as has been pointed out by Proudman & Johnson (1961). 
The present work shows that for sharp trailing edges, however, no such solution exists. 

For small or moderate trailing-edge angles, a moving singularity occurs in the 
solution fairly early in the flow development. The flow in the vicinity of this singularity 
exhibits the characteristics of unsteady separation. For large trailing-edge angles, 
the boundary layer becomes so thick that solutions must be terminated before there 
is any evidence of a singularity. For a cusped trailing edge, the solution is arbitrarily 
terminated to avoid large computational times and with the realization that the 
trailing edge flow must eventually be influenced by the leading edge at which time the 
present solutions cease to have meaning. 

1. Introduction 
When a symmetrical body is impulsively set into motion, a t  time t = 0,  with a 

uniform motion along the plane of symmetry, the inviscid flow over the body develops 
instantaneously. This flow is the classical irrotational flow. On the other hand, the 
flow within the viscous layer adjacent to the body develops slowly, reaching a fully 
developed unsteady flow only after some period of time. 

The development of this viscous layer actually occurs in two stages. For small times, 
the viscous flow is dominated by local forces and accelerations; the local flow is inde- 
pendent of conditions far upstream and in particular a t  the leading edge of the body. 
At some later time the influence of the leading edge comes into play and the flow 
develops under the influence of both local conditions and the conditions far upstream 
(at the leading edge). This dual development of the viscous layer has been demonstrated 
in the case of a flat plate by Stewartson (1951), Hall (1969) and Dennis (1972) and 
in the case of wedges by Smith (1967)) Nanbu (1971) and Williams & Rhyne 
(1980). 

In the present brief note we investigate the first phase of the unsteady development, 
according to the boundary-layer equations, of the viscous flow in the vicinity of a 
rear stagnation point on a body with a sharp trailing edge. An appropriate idealization 
for such a flow appears to be the flow in the vicinity of a wedge with the flow leaving 
the wedge (as opposed to flowing onto the wedge). For this flow a potential flow solution 
is known. This potential flow solution is taken as the instantaneously developed inviscid 
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FIGURE 1. Flow geometry for flow .near a rear stagnation point. 

flow in the vicinity of the sharp trailing edge and the initial development of the viscous 
layer, resulting from this potential flow is investigated. 

Such an analysis may be considered as a logical extension of the work of Proudman 
& Johnson (1961) who investigated the unsteady development according to the 
Navier-Stokes equations, of the viscous flow in the vicinity of a rear stagnation point 
on a bluff body impulsively set into motion. Indeed, one member of the family of flows 
investigated herein is exactly the flow studied by Proudman & Johnson and later re- 
examined by Robins & Howarth (1972). It is shown that only in the case of a bluff 
body (a trailing-edge-included angle of 180") does there exist a large-time similarity 
solution for the outer inviscid flow which scales exponentially with time. The results 
of this investigation indicate that for small or moderately sharp trailing edges a moving 
singularity occurs quite early in the flow development. Furthermore, the flow in the 
vicinity of this moving singularity has just the characteristics postulated in the Moore- 
Rott-Sears model for unsteady boundary-layer separation. For large trailing-edge 
angles, the boundary layer appears to become excessively thick and no indication of 
a separation singularity is found prior to the termination of the solution on the basis 
of the boundary-layer thickness. 

2. Analysis 
We consider the inviscid (irrotational) flow field in the vicinity of a sharp trailing 

edge on a symmetrical body which has been impulsively set into motion a t  time t = 0. 
The flow in the neighbourhood of the sharp trailing edge is idealized by considering 
the flow off a wedge (figure 1) .  Let x and y be co-ordinates measured, respectively, 
along the surface from the trailing edge and normal to the surface of the body. The 
corresponding velocity components are u and v, respectively. The potential flow 
solution for the idealized flow in the neighbourhood of the trailing edge is simply 
the inverse of the potential flow for a sharp wedge. The stream function in this case 
is given by 
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where r and 8 are conventional polar co-ordinates, and the velocity component parallel 
to the surface, denoted by U g  is simply 

u g  = - CXm. ( 2 )  

Here m is related to the internal angle of the trailing edge, pn, by 

p7r = 27rm/(m+ 1). 

This is the inviscid flow which develops instantaneously when the body is impulsively 
set into motion. We now turn out attention to the initial development of the viscous 
boundary layer, bounded on one side by the body and on the other by the foregoing 
inviscid flow. The unsteady development of this boundary layer is described by the 
usual boundary-layer equations : 

au av au au au au, au, PU - + - = o ,  -+u-+w-=-+uu,-++- 
ax ay at ax ay at ax ay2’ (4) 

where t is time and v is the kinematic viscosity of the fluid. The appropriate boundary 
conditions for this problem are the no-slip and impermiable wall conditions a t  the 
wall : 

u ( x ,  0, t )  = v ( x ,  0, t )  = 0 ( 5 )  

and the condition that the viscous flow passes over to inviscid flow at large y :  

lim u(x,  y ,  t )  = Ug(x, t )  = - C X ~ .  
Y-+W 

The problem a t  hand is to determine the development of the velocity field (u, v) as a 
function of the spatial co-ordinates x and y ,  and of time t .  Clearly the problem is one 
of three independent variables (x, y ,  t ) .  The number of independent variables may be 
reduced to two by an appropriate scaling. An appropriate scaling for the present 
problem may be found either by the formal technique of semi-similar solutions 
(Williams & Johnson 1974) or on the basis of dimensional considerations. In  either 
case, it  is possible to show that two new scaled co-ordinates are 

G,(E) cxm-1 * 
= ? I (  

) , E = Gz(-cxm--lt), 

where G,(O and G,( -cxm-lt) are two arbitrary functions. Consider first the case 
where these functions are chosen so that 

GI(<) = - - E G, = 1 - exp [ - 2cxm-ltl. 
6 ’  

That is 

T ’ Y  , = 1 - exp [ - 2cxm-lt]. (7) 

This choice of the functions G ,  and G, is made for a very practical reason. Note that 
this particular choice for the functional form of .$ collapses the infinite interval of 
integration, 0 < t ,< co, into a finite interval 0 < 6 < 1. The choice of the functional 
form of G, in the y scaling is made so that for small time 11 z y / t* ,  which is the appro- 
priate scaling for small-time problems (this is the so-called Rayleigh scaling) while 
for large time 7 -N y / e t .  This latter scaling is the one suggested by Proudman & 
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Johnson (1961) for the large-time solution to the bluff-body rear-stagnation-point 
problem. 

The above scalings are used together with a dimensionless stream function f ( 5 , ~ )  
defined by 

The continuity equation is satisfied identically and the momentum equation becomes: 

The appropriate boundary conditions for this problem, in the transformed co-ordinates, 
are 

We note that in the case where m = 1, equation (9) becomes 

Now if we ignore the viscous term and take the limit as 5 -+ 1, equation (12) reduces to 

This is the equation whose solution describes the outer inviscid flow a t  large times 
(equation (14) of Proudman & Johnson 1961; equation (3.1) of Robins & Howarth 
1972). A close inspection of equation (9) indicates that such a similarity equation does 
not exist i fm =+ 1; i.e. there is no similarity solution to the outer inviscid flow field a t  
large times (5 -+ 1). 

The scalings given by equations (7), while appropriate in demonstrating the existence 
or non-existence of a similar solution for the inviscid portion of the flow a t  large times, 
are not appropriate for numerical computation of the flow field. We seek other scalings 
for this purpose. I n  this quest, we are guided by the fact, noted by Proudman & 
Johnson, that for large times the flow near the wall a t  the rear stagnation point 
approaches a steady flow towards the stagnation point and therefore the skin-friction 
coefficient tends to  a finite negative value, equal in magnitude to  the skin friction at  a 
front stagnation point. This fact suggests that  the appropriate scaling for flows in the 
vicinity of the sharp trailing edge, a t  large time may simply be the Falkner-Skan 
scaling. For small time, however, the appropriate scaling is still the Rayleigh scaling 
which is independent of x. To obtain the desired scaling which has the proper small- 
time and large-time behaviour, we introduce 

Gl = l /g  and G ,  = 1 -exp [ - cxm-It] (14) 
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FIGURE 2. Variation of the normalized wall shear with the non-dimensional time, 

7 ,  for various values of m. 

so that 

Clearly q behaves as y / t j  for small time and as y(cxm/x)* for large time, the desired 
behaviour for these scalings. With a non-dimensional stream function defined by 
$ = - (~cx~+~,$ f (6, q), the reduced momentum equation becomes 

For simplicity in computing, equation (16) as written as a pair of equations: 

I n  this new system of two equations, the boundary conditions become: 

w(g, 0) = f (E ,  0) = 0, lim w(f;, 7) = 1.  
v-fm 

Equations (17a, b ) ,  subject to the boundary conditions given by (18), have been 
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solved using an implicit finite-difference scheme, similar to that proposed by 
Blottner (1972). Results have been obtained for values of m of 0, 0.2, 0.4, 0.6, 0.8, 
and 1.0 corresponding to, within the limits of this model, trailing-edge-included angles 
of 0, 1.047, 1.796, 2.356 and T radians, respectively. 

The solution of equation (16) (or alternately of (17a, b ) )  is started a t  6 = 0 where 
equation (1 6) becomes 

The solution to this equation is straightforward and extremely simple. It is, in fact, 
the classical Rayleigh solution for the flow past an infinite flat plate, impulsively set 
into motion. Once the solution a t  < = 0 is known, solutions a t  subsequent stations are 
obtained by a straight-forward marching technique. 

3. Results 
Results for the normalized skill-friction coefficient 

are presented in figure 2 as a function of the normalized time r defined by Qcxm-'t. 
Here results are presented for values of m of 0,  0.2, 0.4, 0.6, 0.8 and 1.0. 

The calculations which lead to these results were terminated one of three ways, 
depending upon the manner in which the solution proceeds. For m = 0 (the trailing 
edge of a flat plate) the normalized skin friction appeared to approach zero as r 
becomes large. For this case, the solution was arbitrarily terminated a t  a value of r 
of approximately 3.8 to avoid excessive computer time. Furthermore, the present 
analysis is only valid for a limited time. As pointed out earlier, the development of 
the boundary layer, after an impulsive start, occurs in two phases. The first of these, 
which is being calculated here, is independent of the conditions upstream, particu- 
larly a t  the leading edge of the body. This phase is terminated when the presence of 
the leading edge is felt a t  the station in question. The time required for the effect of 
the leading edge to be transmitted to a given local station is proportional to the 
distance between the leading edge and the local station and inversely proportional to 
the average speed, a t  the upper edge of the boundary layer, between the leading edge 
and the point in question. Obviously, the time required for the effect of the leading 
edge to be 'felt' locally can be altered by changing the shape of the body upstream 
from the point in question. However, the influence of the leading edge, a t  the trailing 
edge, cannot be delayed indefinitely. It was therefore felt that it was not realistic to 
extend the cslculations iEdefinitely since sooner or later the effects cf the leading edge 
would be felt. 

For m = 0.8 and m = 1.0 the computations were terminated at  moderate values of 
r because the boundary-layer thickness exceeded an arbitrary value corresponding to 
7 = 60. The validity of the calculations for m = 0.8 when the boundary layer becomes 
excessively thick is certainly open to question. On the other hand, the solution for 
m = 1.0 is a solution to the full Navier-Stokes equations and therefore is not limited 
by the boundary layer assumptions. The extension of the solution form = 1.0, beyond 
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FIGURE 3. Variation of the minimum value of the coefficient u4 with 7 (m = 0.2). 

the point where the boundary-layer thickness exceeds the value corresponding to 
7 = 60, is shown in figure 2 as a dashed line. As expected, the value off: for this case 
appears to asymptote the value - 1-2326 as predicted by Proudman & Johnson. It 
is interesting to note that form = 0.8, fi also appears to be approaching asymptotically 
the value - 1.11136 which is the inverse of the Falkner-Skan value for m = 0.8. 
Whether this particular result has any meaning, however, is open to question. 

For values of the parameter m of 0.2, 0.4, or 0.6, the solutions were terminated fairly 
early, in terms of r ,  by a rapid increase in the number of iterations required to obtain 
convergence a t  each subsequent station until, a t  some station, convergence could not 
be obtained in a given large number of iterations. This is just the behaviour which is 
generally accepted to indicate the approaching of a singularity in the solution of the 
boundary-layer equations. This numerical behaviour, in itself, is not sufficient proof 
of a singularity. We therefore return to the equations of motion for an indication of 
the source of the numerical problems. The source of the difficulty is found when the 
momentum equation is written in the form shown in equations (l7a, 6). We note that 
if the coefficient a4, in equation (17a), vanishes a t  some point in the solution domain 
while the left-hand side of the equation does not vanish one can expect a singularity 
in the solution. To determine whether or not this is the case in the present calculations, 
the minimum value of a4 a t  each station was calculated and its variation with 5 was 
tracked as the solution progressed. Figure 3 shows the variation of the minimum value 
of a4, at  each station, with r for the case m = 0.2. Similar results were obtained for 
m = 0-4 and m = 0.6. Figure 3 clearly shows that the numerical difficulties which lead 
to the termination of the solution are the result of the singularity associated with the 
vanishing, a t  a point in the flow field, of the coefficient a4. 

In  the physical plane, the singularity which terminates the flow for m = 0.2, 0.4 
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FIGURE 4. Velocity profiles, in a co-ordinate system moving with separation, 
at several values of 71 (m = 0.2). 

and 0.6 is a moving singularity. If we estimate, by extrapolation, that the singularity 
occurs a t  <,, then from the second of equations (15) we have: 

tS = 1 - exp [ - cx,m-lt] 

where x, is the physical co-ordinate for the singular point. Hence, 

1K-m) 

= (-In ( 1  ct -ts) 1 
so that as the singular point moves away from the rear stagnation point (forward 
along the body) with increasing time. The speed a t  which the singular point moves is 
given by 

It is instructive now to look a t  the velocity profiles a t  several values of 7 (or 5) 
as seen in a co-ordinate system which is moving with the singularity. Figure 4 shows 
velocity profiles a t  values of 7 of 0, 1.753, and 2.702 (values of of 0, 0-97 and 0.9955, 
respectively) as seen in this moving co-ordinate system. Since 7 (or 5) is a combination 
of x and t ,  these three profiles may be viewed alternately as either the velocity profiles 
at three x stations as seen a t  a fixed time, or as velocity profiles a t  the same x station 
as seen a t  three different times. I n  the first case, increasing values of < correspond to  
decreasing values of z; in the second case increasing values of 5 corresponding to 
increasing values of time. As 6 increases toward the value &,, the velocity profile, in 
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FIGURE 5 .  Vorticity transport normal to the wall, w * ~ u * / ~ ? J * ,  
at the point of maximum vorticity. 

7 

the moving co-ordinate system, approaches a profile in which both the shear and 
velocity approach zero simultaneously, a t  a point within the boundary layer. These 
are just the characteristics which have been proposed as corresponding to unsteady 
separation (the Moore-Rott-Sears model). Similar results are obtained for values of 
m of 0.4 and 0.6. The singularity which occurs in the solutions for moderate wedge 
angles is therefore clearly tied to separation of the unsteady boundary layer as pre- 
dicted by the Moore-Rott-Sears model. 

Finally, the non-dimensional time a t  which the wall shear vanishes, T ~ ,  and the 
non-dimensional time a t  which separation occurs, T,, are summarized in table 1 for 
the various values of m. 

4. Concluding remarks 
A study has been made of the initial development, according to the boundary layer 

equations, of the flow in the vicinity of the sharp trailing edge of a symmetrical body 
which is impulsively set into motion. For the case where the trailing edge angle is T,  

there is a similar solution for the inviscid outer f l o ~ ,  as has been pointed out by 
Proudman & Johnson (19G1). For all other trailing edge angles, however, no such 
inviscid solution exists. 
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112 70 7. 
0 
0.2 1.675 2.772 
0.4 0.819 1.750 
0.6 0.541 1.555 
0.8 0.404 - 
1.0 0.322 - 

TABLE I .  Non-dimensional times for zero wall shear, 70, and for separation, 7.. 

- - 

For a trailing edge with an included angle of zero (m = 0) the solution is terminated 
to avoid large computational times and with the realization that the flow in the vicinity 
of the trailing edge will ultimately be influenced by the leading edge. For large trailing- 
edge angles, the solutions are terminated due t o  excessive boundary-layer thicknesses. 
For moderate trailing edge angles, the solutions are terminated by the approaching 
of a singularity in the solutions to the boundary-layer equations. In  the physical 
plane this singularity moves up the body from the trailing edge. It is shown that in a 
co-ordinate system moving with the singularity, as the flow approaches the singularity 
the velocity profile approaches one in which the shear and velocity vanish simul- 
taneously at  some point within the boundary layer. These results thus substantiate 
the Moore-Rott-Sears model for unsteady separation, at  least in the case where the 
separation point moves forward along the body. 

In  recent years a number of investigators have presented solutions to the boundary- 
layer equations which substantiate the Moore-Rott-Sears model for unsteady boundary 
layer separation. Until recently, however, there has been no adequate description of 
the physical process of separation - no description that would tie both steady and 
unsteady separation together. Recently, van Dommelen & Shen (1981) have provided 
a clear and unambiguous description of flow separation. They indicate that separation, 
either steady or unsteady, is defined as the ‘point where a vorticity streak departs 
from the wall’. They speak further of the ‘ejected vorticity layer’. This process of 
separation can be seen in the present results. A strong layer of vorticity forms imme- 
diately adjacent to the wall early in the flow. At the time when the local velocity 
profile has an inflection, this layer of vorticity moves off the wall but remains close to it. 
Even after the point of zero shear passes a local station, the vorticity layer remains 
relatively close to the wall. Within the limits of boundary-layer theory, the vorticity 
w is given by w = - au/ay. The presence of the layer of vorticity at  various positions 
relative to the wall is shown in figure 4. The layer of strong vorticity is clear in these 
velocity profiles. We note the second vorticity layer being generated on the wall by 
the reverse flow beyond the point of zero wall shear. 

The concept of separation involves more than just the location of the vorticity layer. 
It involves also the idea of ejection of the vorticity layer. That such ‘ejection’ occurs 
and is indeed associated with the singularity is shown in figure 5 where the product 
of the maximum shear au*/ay* and the corresponding vertical velocity v* is plotted 
as a function of r ,  again for m = 0.2. Similar results are obtained for m = 0.4 and 0.6. 

For small 7 the shear layer lies on the wall (figure 4) and the vertical velocity is 
small so that the rate at  which vorticity is transported normal to the wall is small 
(figure 5 ) .  Beyond r N 0.105 (the point at  which there is an inflection point in the 
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velocity profile), the peak in vorticity rises off the wall (figure 4) but the vertical 
velocities are small and so the vorticity transport normal to the wall remains small. 
Beyond r -N 1.642 (the point of zero wall shear), the peak in the vorticity rises further 
off the wall (figure 4) and, while the vertical component of velocity is increasing, it is 
still relatively small and so the net vorticity transport normal to the wall is still 
relatively small. Only as 7 approaches the singularity (7 N 2.702) does the point of 
maximum vorticity move quite far from the wall while the normal component of 
velocity becomes quite large so that the normal transport of vorticity increases 
rapidly. Thus we now have a complete description of the physical phenomenon of 
separation. A layer of strong vorticity is initially generated at the wall, then slowly 
moves off the wall and finally is ejected from the vicinity of the wall by the strong 
verticalvelocity associated with separation. It is important to note that this description 
of separation applies equally well to both steady and unsteady flows. 
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